3.3.19 \(\int \tanh ^3(x) (a+b \tanh ^2(x))^{3/2} \, dx\) [219]

3.3.19.1 Optimal result
3.3.19.2 Mathematica [A] (verified)
3.3.19.3 Rubi [A] (verified)
3.3.19.4 Maple [B] (verified)
3.3.19.5 Fricas [B] (verification not implemented)
3.3.19.6 Sympy [A] (verification not implemented)
3.3.19.7 Maxima [F]
3.3.19.8 Giac [B] (verification not implemented)
3.3.19.9 Mupad [B] (verification not implemented)

3.3.19.1 Optimal result

Integrand size = 17, antiderivative size = 82 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=(a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b} \]

output
(a+b)^(3/2)*arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))-(a+b)*(a+b*tanh(x)^ 
2)^(1/2)-1/3*(a+b*tanh(x)^2)^(3/2)-1/5*(a+b*tanh(x)^2)^(5/2)/b
 
3.3.19.2 Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.05 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=(a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {\sqrt {a+b \tanh ^2(x)} \left (3 a^2+20 a b+15 b^2+b (6 a+5 b) \tanh ^2(x)+3 b^2 \tanh ^4(x)\right )}{15 b} \]

input
Integrate[Tanh[x]^3*(a + b*Tanh[x]^2)^(3/2),x]
 
output
(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Tan 
h[x]^2]*(3*a^2 + 20*a*b + 15*b^2 + b*(6*a + 5*b)*Tanh[x]^2 + 3*b^2*Tanh[x] 
^4))/(15*b)
 
3.3.19.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.588, Rules used = {3042, 26, 4153, 26, 354, 90, 60, 60, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int i \tan (i x)^3 \left (a-b \tan (i x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \tan (i x)^3 \left (a-b \tan (i x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle i \int -\frac {i \tanh ^3(x) \left (b \tanh ^2(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int \frac {\tanh ^2(x) \left (b \tanh ^2(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh ^2(x)\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{2} \left (\int \frac {\left (b \tanh ^2(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh ^2(x)-\frac {2 \left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left ((a+b) \int \frac {\sqrt {b \tanh ^2(x)+a}}{1-\tanh ^2(x)}d\tanh ^2(x)-\frac {2 \left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left ((a+b) \left ((a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2 \left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left ((a+b) \left (\frac {2 (a+b) \int \frac {1}{\frac {a+b}{b}-\frac {\tanh ^4(x)}{b}}d\sqrt {b \tanh ^2(x)+a}}{b}-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2 \left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left ((a+b) \left (2 \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2 \left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

input
Int[Tanh[x]^3*(a + b*Tanh[x]^2)^(3/2),x]
 
output
((-2*(a + b*Tanh[x]^2)^(3/2))/3 - (2*(a + b*Tanh[x]^2)^(5/2))/(5*b) + (a + 
 b)*(2*Sqrt[a + b]*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - 2*Sqrt[a + 
 b*Tanh[x]^2]))/2
 

3.3.19.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.19.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(487\) vs. \(2(66)=132\).

Time = 0.08 (sec) , antiderivative size = 488, normalized size of antiderivative = 5.95

method result size
derivativedivides \(-\frac {\left (a +b \tanh \left (x \right )^{2}\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}\) \(488\)
default \(-\frac {\left (a +b \tanh \left (x \right )^{2}\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}\) \(488\)

input
int(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/5*(a+b*tanh(x)^2)^(5/2)/b-1/6*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(3/ 
2)+1/2*b*(1/4*(2*b*(1+tanh(x))-2*b)/b*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b 
)^(1/2)+1/8*(4*(a+b)*b-4*b^2)/b^(3/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+t 
anh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)))-1/2*(a+b)*((b*(1+tanh(x))^2-2*b*(1+ 
tanh(x))+a+b)^(1/2)-b^(1/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+tanh(x))^2- 
2*b*(1+tanh(x))+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b 
)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x))))-1/6*(b* 
(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)-1/2*b*(1/4*(2*b*(tanh(x)-1)+2*b)/ 
b*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/8*(4*(a+b)*b-4*b^2)/b^(3/2 
)*ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2) 
))-1/2*(a+b)*((b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b^(1/2)*ln((b*(t 
anh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))-(a+b)^(1 
/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x 
)-1)+a+b)^(1/2))/(tanh(x)-1)))
 
3.3.19.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2188 vs. \(2 (66) = 132\).

Time = 0.49 (sec) , antiderivative size = 4941, normalized size of antiderivative = 60.26 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")
 
output
[1/60*(15*((a*b + b^2)*cosh(x)^10 + 10*(a*b + b^2)*cosh(x)*sinh(x)^9 + (a* 
b + b^2)*sinh(x)^10 + 5*(a*b + b^2)*cosh(x)^8 + 5*(9*(a*b + b^2)*cosh(x)^2 
 + a*b + b^2)*sinh(x)^8 + 40*(3*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x 
))*sinh(x)^7 + 10*(a*b + b^2)*cosh(x)^6 + 10*(21*(a*b + b^2)*cosh(x)^4 + 1 
4*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^6 + 4*(63*(a*b + b^2)*cosh(x) 
^5 + 70*(a*b + b^2)*cosh(x)^3 + 15*(a*b + b^2)*cosh(x))*sinh(x)^5 + 10*(a* 
b + b^2)*cosh(x)^4 + 10*(21*(a*b + b^2)*cosh(x)^6 + 35*(a*b + b^2)*cosh(x) 
^4 + 15*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^4 + 40*(3*(a*b + b^2)*c 
osh(x)^7 + 7*(a*b + b^2)*cosh(x)^5 + 5*(a*b + b^2)*cosh(x)^3 + (a*b + b^2) 
*cosh(x))*sinh(x)^3 + 5*(a*b + b^2)*cosh(x)^2 + 5*(9*(a*b + b^2)*cosh(x)^8 
 + 28*(a*b + b^2)*cosh(x)^6 + 30*(a*b + b^2)*cosh(x)^4 + 12*(a*b + b^2)*co 
sh(x)^2 + a*b + b^2)*sinh(x)^2 + a*b + b^2 + 10*((a*b + b^2)*cosh(x)^9 + 4 
*(a*b + b^2)*cosh(x)^7 + 6*(a*b + b^2)*cosh(x)^5 + 4*(a*b + b^2)*cosh(x)^3 
 + (a*b + b^2)*cosh(x))*sinh(x))*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 
+ 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + 
 a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x) 
^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 
+ (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 
+ 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 
+ 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3...
 
3.3.19.6 Sympy [A] (verification not implemented)

Time = 10.26 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.72 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=- a \left (\begin {cases} \frac {2 \left (\frac {b^{2} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{2} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}{6}\right )}{b^{2}} & \text {for}\: b \neq 0 \\\sqrt {a} \left (\frac {\log {\left (\tanh ^{2}{\left (x \right )} - 1 \right )}}{2} + \frac {\tanh ^{2}{\left (x \right )}}{2}\right ) & \text {otherwise} \end {cases}\right ) - b \left (\begin {cases} \frac {2 \left (\frac {b^{3} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{3} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {5}{2}}}{10} + \frac {\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}} \left (- \frac {a b}{2} + \frac {b^{2}}{2}\right )}{3}\right )}{b^{3}} & \text {for}\: b \neq 0 \\\sqrt {a} \left (\frac {\log {\left (\tanh ^{2}{\left (x \right )} - 1 \right )}}{2} + \frac {\tanh ^{4}{\left (x \right )}}{4} + \frac {\tanh ^{2}{\left (x \right )}}{2}\right ) & \text {otherwise} \end {cases}\right ) \]

input
integrate(tanh(x)**3*(a+b*tanh(x)**2)**(3/2),x)
 
output
-a*Piecewise((2*(b**2*sqrt(a + b*tanh(x)**2)/2 + b**2*(a + b)*atan(sqrt(a 
+ b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) + b*(a + b*tanh(x)**2)**(3/ 
2)/6)/b**2, Ne(b, 0)), (sqrt(a)*(log(tanh(x)**2 - 1)/2 + tanh(x)**2/2), Tr 
ue)) - b*Piecewise((2*(b**3*sqrt(a + b*tanh(x)**2)/2 + b**3*(a + b)*atan(s 
qrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) + b*(a + b*tanh(x)**2 
)**(5/2)/10 + (a + b*tanh(x)**2)**(3/2)*(-a*b/2 + b**2/2)/3)/b**3, Ne(b, 0 
)), (sqrt(a)*(log(tanh(x)**2 - 1)/2 + tanh(x)**4/4 + tanh(x)**2/2), True))
 
3.3.19.7 Maxima [F]

\[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\int { {\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {3}{2}} \tanh \left (x\right )^{3} \,d x } \]

input
integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tanh(x)^2 + a)^(3/2)*tanh(x)^3, x)
 
3.3.19.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1063 vs. \(2 (66) = 132\).

Time = 1.46 (sec) , antiderivative size = 1063, normalized size of antiderivative = 12.96 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")
 
output
1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x 
) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))) - 1/2*(a + b)^(3/2) 
*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 
 2*b*e^(2*x) + a + b) - sqrt(a + b))) - 1/2*(a^2 + 2*a*b + b^2)*log(abs(-( 
sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2* 
x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 4/15*(15*(a^2 + 
 4*a*b + 3*b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^ 
(2*x) - 2*b*e^(2*x) + a + b))^9 + 15*(7*a^2 + 20*a*b + 9*b^2)*(sqrt(a + b) 
*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) 
)^8*sqrt(a + b) + 20*(15*a^3 + 39*a^2*b + 21*a*b^2 + b^3)*(sqrt(a + b)*e^( 
2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^7 
+ 20*(21*a^3 + 21*a^2*b - 57*a*b^2 - 65*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a 
*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^6*sqrt(a + b) + 
 2*(105*a^4 - 210*a^3*b - 1860*a^2*b^2 - 1590*a*b^3 + 19*b^4)*(sqrt(a + b) 
*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) 
)^5 - 10*(21*a^4 + 126*a^3*b + 288*a^2*b^2 - 390*a*b^3 - 349*b^4)*(sqrt(a 
+ b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a 
+ b))^4*sqrt(a + b) - 20*(21*a^5 + 63*a^4*b - 18*a^3*b^2 - 378*a^2*b^3 - 2 
35*a*b^4 + 19*b^5)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a 
*e^(2*x) - 2*b*e^(2*x) + a + b))^3 - 20*(15*a^5 + 21*a^4*b - 126*a^3*b^...
 
3.3.19.9 Mupad [B] (verification not implemented)

Time = 9.97 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.37 \[ \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=-\frac {{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{5/2}}{5\,b}-\left (\frac {a+b}{3\,b}-\frac {a}{3\,b}\right )\,{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}-\left (a+b\right )\,\left (\frac {a+b}{b}-\frac {a}{b}\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}-\mathrm {atan}\left (\frac {{\left (a+b\right )}^{3/2}\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}\,1{}\mathrm {i}}{a^2+2\,a\,b+b^2}\right )\,{\left (a+b\right )}^{3/2}\,1{}\mathrm {i} \]

input
int(tanh(x)^3*(a + b*tanh(x)^2)^(3/2),x)
 
output
- (a + b*tanh(x)^2)^(5/2)/(5*b) - ((a + b)/(3*b) - a/(3*b))*(a + b*tanh(x) 
^2)^(3/2) - atan(((a + b)^(3/2)*(a + b*tanh(x)^2)^(1/2)*1i)/(2*a*b + a^2 + 
 b^2))*(a + b)^(3/2)*1i - (a + b)*((a + b)/b - a/b)*(a + b*tanh(x)^2)^(1/2 
)